

Customer: TrustSwap
Date: February 2nd, 2022

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
TrustSwap.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Vesting
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/trustswap/team-finance-contracts
Commit 8a18a0f7bc3df519236145b7375efe08d94fb192
Technical
Documentation

NO

JS tests NO
Website https://trustswap.com/
Timeline 19 JANUARY 2022 – 02 FEBRUARY 2022
Changelog 02 FEBRUARY 2022 – INITIAL AUDIT

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 11

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by TrustSwap (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between January 19th, 2022 - February 2nd, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/trustswap/team-finance-contracts
Commit:

8a18a0f7bc3df519236145b7375efe08d94fb192
Technical Documentation: No
JS tests: No
Contracts:

IERC20Extended.sol
IPriceEstimator.sol
LockToken.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

www.hacken.io

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 2 medium and 2 low severity
issues.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Calls inside the loop.

In the specified function there is a loop that continuously asks for a
balance and transfers the same token from the sender to the contract
address.

Contract: LockToken.sol

Functions: createMultipleLocks

Recommendation: It would be much more sufficient to get the balance
once before the loop, then in the loop just sum all amounts and after
the loop execute the only one transferFrom call. If you still need
multiple transferFrom calls (i.e. for events emitting) please consider
still having a balance as the local variable, not to call for it twice
per loop.

2. Costly operations inside the loop.

In the specified function there is a loop that continuously updates
state variables in the loop.

Contract: LockToken.sol

Functions: createMultipleLocks

Recommendation: It would be much more sufficient to get state variables
into the memory local variables, update them in the loop and store them
to the state after the loop.

 Low

1. Unused variable.

Both functions are saving the result of the ETH refund to the local
variable which is never used.

Contract: LockToken.sol

Functions: lockTokens, createMultipleLocks

Variable: refundSuccess

www.hacken.io

Recommendation: Remove unused variables.

2. Duplicate code.

Both functions are calculating ETH fees using the same code duplicated
in both functions.

Contract: LockToken.sol

Functions: lockTokens, createMultipleLocks

Recommendation: To keep the code clean, readable, and to be sure both
functions are calculating the same, please move the duplicated code to
some private function and call it from both.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 2 medium and 2 low severity
issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

