
hacken.io

2026 Smart
Contract Audit

Readiness
Checklist

https://hacken.io/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist

2026 Smart Contract Audit Readiness Checklist

hacken.io Building the trust layer for the digital asset economy 02 06

2026 Smart Contract Audit
Readiness Checklist
Applicable for Smart Contracts, Protocols, Web3 & Web2 Projects

This pre-audit checklist helps teams prepare for a security assessment, ensuring efficient
reviews, accurate findings, and high-quality results. Poor preparation can lead to delays,
incomplete findings, and reduced audit accuracy.

Five Simple Steps Pre-Audit To to Get The Most Of Your Security Assessment

1

Step 1

Development Environment
Development environment is
configured and accessible

Step 2

Clean and executable code
Code adheres to style
guides and compiles
successfully.

Step 4

Testing Suite and
Unit Tests
Comprehensive tests
are in place.

Step 3

Documentation
All documentation is
complete and up-to-date.

Step 5

Code Freeze
Code freeze is implemented,
the code is ready for the audit Audit-Ready!

1. Development Environment
The project should have a development environment with a testing suite configured. It can be
any development environment preferred by the customer development team.

Advantages:

Enhanced debugging: Facilitates tracking down and fixing coding errors efficiently.

Simplified testing: You can freely test and break things without affecting the live code.

Better version control: Helps manage different versions of your code and track changes.

Reduced risk of accidental live deployment: Avoids premature or accidental deployment of unfinished code.

Key requirements:

No private dependencies should be included. All dependencies must be downloaded without additional
configuration or manual setup.

Any other global packages except a packages manager and a language compiler are required.

The setup is OS-agnostic and can be run on Windows, Linux, or macOS.

Run instructions are provided and, if executed, allow the successful compilation of the source code.

https://hacken.io/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist

2026 Smart Contract Audit Readiness Checklist

hacken.io Building the trust layer for the digital asset economy 03 06

2. Clean and Executable Code
Key requirements:

The code adheres to an official language style guide.

The code compiles successfully without errors.

All TODO, FIXME, and temporary debug comments are removed.

Remove console.log / hardhat/console.sol imports

Remove dead code and unused imports

3. Documentation
The project must include sufficient technical and functional documentation, available in English.

Technical documentation describes and explains anything related to the software product, ranging from internal
documentation for teams to external documentation written for end users.

Key requirements for technical documentation:

Programming languages and technologies utilized

Instructions for deployment

Usage of third party dependencies/programs

Development environment description

Run instructions

Tests run instructions

Benchmarks

System architecture and internal/external interactions

Functional documentation define the intended system behavior and invariants, helping verify that the code truly meets project
goals and user needs.

Key requirements for functional documentation:

Functional requirements should be clear, specific, and easy to understand.

Users should be able to earn tokens.

The contract should enable users to stake ABC tokens and earn XYZ tokens as rewards.

Functional requirements are testable so that they can be used to verify that the product is functioning correctly.

End-user interaction flows are clearly defined.

System inputs and outputs are explicitly specified.

https://hacken.io/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist

2026 Smart Contract Audit Readiness Checklist

hacken.io Building the trust layer for the digital asset economy 04 06

Behavioral constraints and limitations are documented.

Performance and reliability requirements are stated.

Configuration and deployment parameters

Configurable parameters and their valid ranges

Minimum and maximum values for numerical inputs

Token decimal precision assumptions

Time-based constraints (lock periods, vesting intervals, voting periods, rate limits, caps)

Access Control Matrix

Role definitions and their permissions

Function-level access restrictions

Privilege escalation paths (intended and restricted)

Multi-sig requirements and thresholds

Upgrade/migration procedures

4. Prepare Testing Suite and Unit Tests
Unit tests can uncover security issues before an audit and significantly reduce audit time and
cost by allowing auditors to focus on higher-risk areas.

Advantages:

For customers: Validate that core functionality works as intended and help prevent costly bugs or fund losses.

For auditors: Provide a clear baseline to verify system behavior and speed up validation of identified issues.

Recommendations to follow:

Cover positive cases (happy paths)

Cover negative cases

Cover cases of construct usage by multiple users

Ensure that code coverage plugin is configured

Ensure that any additional required configuration (e.g. etherscan keys) is documented.

5. Code Freeze
A code freeze is the practice of halting changes to the codebase during an audit to ensure
auditors review a stable and consistent version, improving the reliability of findings.

Advantages:

Stability: Auditors work with an unchanging codebase.

Accuracy: Minimizes errors caused by ongoing updates.

Efficiency: Avoids delays from reviewing newly introduced changes.

https://hacken.io/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist

2026 Smart Contract Audit Readiness Checklist

hacken.io Building the trust layer for the digital asset economy 05 06

Ready to dive
deeper?

Book your security assessment

https://hacken.io/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist
https://hacken.io/services/blockchain-security/smart-contract-security-audit/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist

2026 Smart Contract Audit Readiness Checklist

Hacken is a leader in blockchain security, combining deep technical
expertise in Web3 with real-time data-driven insights.

6800+
vulnerabilities found

$430B
on-chain assets verified

1B+
transactions monitored

$15M
paid out in bug bounties

50+
centralized exchanges

30K+
malicious contracts detected

60+
certified security engineers

ISO 27001
certified

Evolving alongside the industry for years8+

Trusted by digital asset leaders1500+

Our Story

Unlike traditional providers, Hacken was born on blockchain, combining deep technical expertise in Web3
with real-time data-driven insights. Today Hacken is a leader in cybersecurity, trusted by enterprises,
startups, and regulators to secure the new digital asset economy.

Learn more

hacken.io

Follow us on social media

linkedIn X

https://hacken.io/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist
https://www.linkedin.com/company/hacken/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist
https://x.com/hackenclub/?utm_source=hacken&utm_medium=checklist&utm_campaign=sca-readiness-checklist

